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Mining the Universe can be
Computationally Expensive

= Astronomy now generates ~ 1TB data per night
= With VOs, one can pool data from multiple catalogs.

= Computational requirements are becoming much
more extreme relative to current state of the art.

= There will be many problems that would be
Impossible without parallel machines.

= Example: N-Point correlation functions for the SDSS
2-pt: CPU hours
3-pt: CPU weeks
4-pt: 100 CPU years!

= There will be many more problems for which
throughput can be substantially enhanced by parallel
machines.
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i Types of Parallelism

= Data Parallel (or “Embarrassingly Parallel”):

= Example:

100,000 QSO spectra

Each spectrum takes ~1 hour to reduce

Each spectrum is computationally independent from the others
= If you have root access to a Grid resource:

Solution for “traditional” enviroment: Condor

VOs will provide a integrated workflow solution (e.g. Pegasus)

= Running on shared resources like the TeraGrid is more
difficult

TeraGrid has no metascheduler

TeraGrid batch systems cannot handle 100,000 independent
work units

Solution: GridShell (talk to me if you are interested!)

PITTSBURGH

SUPERCOMPUTING
C ENTE R




i Types of Parallelism

= Tightly Coupled Parallelism (What this
talk Is about):

= Data and computational domains overlap

= Examples:
N-Point correlation functions
New object classification
Density estimation
Intersections in parameter space
= Solution(?):
N Tropy
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The Challenge of Parallel Data Analysis
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Parallel programs are hard to write!
= Steep learning curve to learn parallel programming
= Lengthy development time

Parallel world is dominated by simulations:
= Code is often reused for many years by many people

= Therefore, you can afford to spend lots of time writing the
code.

Data Analysis does not work this way:

= Rapidly changing scientific inqueries

= Less code reuse

Data Analysis requires rapid software development!

Even the simulation community rarely does
data analysis in parallel.



i The Goal

_: Minimize development time for
lel applications.

= GOAL: Allow scientists who don’t have the
time to learn how to write parallel programs
to still implement their algorithms in parallel.

= GOAL: Provide seamless scalability from
single processor machines to TeraGrid
platforms

= GOAL: Do not restrict inquiry space.




Methodology

s Limited Data Structures:

=« Most (all?) efficient data analysis methods use
grids or trees.

= Limited Methods:

= Analysis methods perform a limited number of
operations on these data structures.
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$ Methodology

s Examples:

= Fast Fourier Transform
Abstraction: Grid
Method: Global Reduction

= N-Body Gravity Calculation
Abstraction: Tree
Method: Global Top-Down TreeWalk
= 2-Point Correlation Function Calculation
Abstraction: Tree
Method: Global Top-Down TreeWalk

PITTSBURGH
SUPERCOMPUTING




Vision: A Parallel Framework

Web Service Layer (at

WSDL? least from Python)

SOAP? Key:

/ ¢ Framework Components
Computational Steering Tree Services
Python? (C? / Fortran?) User Supplied

!

Framework (“Black Box”)

égﬂkf; | C++ or CHARM++ |
Domain Decomposition Workload Scheduling
Parallel 1/0 Tree/Grid Traversal
/ Result Tracking \
¢ 4
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User serial 1/0 routines

User traversal/decision routines

User serial compute routines




Proof of Concept: PHASE 1

(complete)
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Convert parallel N-Body code “PKDGRAV*” to 3-point
correlation function calculator by modifying existing
code as little as possible.

= *PKDGRAYV developed by Tom Quinn, Joachim Stadel, and
others at the University of Washington

PKDGRAV (aka GASOLINE) benefits:

= Highly portable
MPI, POSIX Threads, SHMEM, Quadrics, & more

= Highly scalable
92% linear speedup on 512 processors
Development time:
= Writing PKDGRAV: ~10 FTE years (could be rewritten in —2)
= PKDGRAV -> 2-Point: 2 FTE weeks
= 2-Point -> 3-Point: >3 FTE months



PHASE 1 Performance

Spatial 3pt—th (RRR — 10 million particles)
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PHASE 1 Performance

Projected 3pt—th (RRR)
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Proof of Concept: PHASE 2
N Tropy

(Currently in progress)

= Use only Parallel Management Layer of PKDGRAV.
= Rewrite everything else from scratch

PKDGRAYV Functional Layout

Computational Steering Layer | Executes on master processor

Coordinates execution and data
q Parallel Management Layer | gistribution among processors

Serial Layer | Executes on all processors

Gravity Calculator Hydro Calculator
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Proof of Concept: PHASE 2
N Tropy
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(Currently in progress)

= Use only Parallel Managment Layer of PKDGRAV.
= Rewrite everything else from scratch

= PKDGRAYV benefits to keep:

= Flexible client-server scheduling architecture
Threads respond to service requests issued by master.
To do a new task, simply add a new service.

= Portability

Interprocessor communication occurs by high-level requests to
“Machine-Dependent Layer” (MDL) which is rewritten to take
advantage of each parallel architecture.

= Advanced interprocessor data caching
< 1 in 100,000 off-PE requests actually result in communication.



2-Point and 3-Point

- algorithm are now
ESIQ n complete!

i N Tropy D

Key:

Tree Services

“User” Supplied Layer

\4

UserCellSubsume
UserParticleSubsume

/ Computational Steering Layer
Layers completely rewritten ¢

Layers retained from PKDGRAV —W PKDGRAYV Parallel Management Layer

Web Service Layer
¢

UserCellAccumulate
UserParticleAccumulate
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¢
General-purpose tree building
and tree walking routines
Parallel 1/0
. Domain decomposition
» Result tracking
V\\

/ / UserTestCells

Interprocessor UserTestParticles

communication layer




- N Tropy “Meaningful” Benchmarks

= The purpose of this framework is to
minimize development time!

= Rewriting user and scheduling layer to
do an N-body gravity calculation:




- N Tropy “Meaningful” Benchmarks

= The purpose of this framework is to
minimize development time!

= Rewriting user and scheduling layer to
do an N-body gravity calculation:

3 Hours




N Tropy New Features

(coming soon)

+

= Dynamic load balancing

= Workload and processor domain
boundaries can be dynamically reallocated
as computation progresses.

= Data pre-fetching

= Predict request off-PE data that will be
needed for upcoming tree nodes.

= Work with CMU Auton-lab to investigate
active learning algorithms to prefetch off-
PE data.




N Tropy New Features

(coming soon)
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= Computing across grid nodes

= Much more difficult than between nodes on a
tightly-coupled parallel machine:
Network latencies between grid resources 1000 times
higher than nodes on a single parallel machine.
= Nodes on a far grid resources must be treated
differently than the processor next door:
Data mirroring or aggressive prefetching.
Sophisticated workload management, synchronization




i Conclusions

= Most data analysis in astronomy Is
done using trees as the fundamental

data

structure.

= Most operations on these tree
structures are functionally identical.

= Based on our studies so far, it appears

feasi
para

nle to construct a general purpose
lel framework that users can

rapic

ly customize to their needs.



