
N Tropy: A Framework for
Parallel Data Analysis

Harnessing the Power of Parallel Grid
Resources for Astronomical Data Analysis

Jeffrey P. Gardner,Jeffrey P. Gardner,

Andy ConnollyAndy Connolly

Pittsburgh Supercomputing CenterPittsburgh Supercomputing Center

University of PittsburghUniversity of Pittsburgh

Carnegie Mellon UniversityCarnegie Mellon University



Mining the Universe can be
Computationally Expensive

Astronomy now generates ~ 1TB data per night
With VOs, one can pool data from multiple catalogs.
Computational requirements are becoming much
more extreme relative to current state of the art.
There will be many problems that would be
impossible without parallel machines.
Example: N-Point correlation functions for the SDSS

2-pt: CPU hours
3-pt: CPU weeks
4-pt: 100 CPU years!

There will be many more problems for which
throughput can be substantially enhanced by parallel
machines.



Types of Parallelism

Data Parallel (or “Embarrassingly Parallel”):
Example:

100,000 QSO spectra

Each spectrum takes ~1 hour to reduce

Each spectrum is computationally independent from the others

If you have root access to a Grid resource:

Solution for “traditional” enviroment: Condor

VOs will provide a integrated workflow solution (e.g. Pegasus)

Running on shared resources like the TeraGrid is more
difficult

TeraGrid has no metascheduler

TeraGrid batch systems cannot handle 100,000 independent
work units

Solution: GridShell (talk to me if you are interested!)



Types of Parallelism

Tightly Coupled Parallelism (What this
talk is about):

Data and computational domains overlap

Examples:
N-Point correlation functions

New object classification

Density estimation

Intersections in parameter space

Solution(?):
N Tropy



The Challenge of Parallel Data Analysis

Parallel programs are hard to write!
Steep learning curve to learn parallel programming
Lengthy development time

Parallel world is dominated by simulations:
Code is often reused for many years by many people
Therefore, you can afford to spend lots of time writing the
code.

Data Analysis does not work this way:
Rapidly changing scientific inqueries
Less code reuse

Data Analysis requires rapid software development!

Even the simulation community rarely does
data analysis in parallel.



The Goal

GOAL: Minimize development time for
parallel applications.

GOAL: Allow scientists who don’t have the
time to learn how to write parallel programs
to still implement their algorithms in parallel.

GOAL: Provide seamless scalability from
single processor machines to TeraGrid
platforms

GOAL: Do not restrict inquiry space.



Methodology

Limited Data Structures:
Most (all?) efficient data analysis methods use
grids or trees.

Limited Methods:
Analysis methods perform a limited number of
operations on these data structures.



Methodology

Examples:
 Fast Fourier Transform

Abstraction: Grid

Method: Global Reduction

N-Body Gravity Calculation
Abstraction: Tree

Method: Global Top-Down TreeWalk

2-Point Correlation Function Calculation
Abstraction: Tree

Method: Global Top-Down TreeWalk



Vision: A Parallel Framework

Computational Steering
Python? (C? / Fortran?)

Framework (“Black Box”)
C++ or CHARM++

User serial compute routines

Web Service Layer (at
least from Python)

Domain Decomposition

Tree/Grid TraversalParallel I/O

User serial I/O routines

VO

XML?
SOAP?

WSDL?
SOAP? Key:

Framework Components
Tree Services
User Supplied

Result Tracking

Workload Scheduling

User traversal/decision routines



Proof of Concept: PHASE 1
(complete)

Convert parallel N-Body code “PKDGRAV*” to 3-point
correlation function calculator by modifying existing
code as little as possible.

*PKDGRAV developed by Tom Quinn, Joachim Stadel, and
others at the University of Washington

PKDGRAV (aka GASOLINE) benefits:
Highly portable

MPI, POSIX Threads, SHMEM, Quadrics, & more

Highly scalable
92% linear speedup on 512 processors

Development time:
Writing PKDGRAV: ~10 FTE years (could be rewritten in ~2)
PKDGRAV -> 2-Point: 2 FTE weeks

2-Point -> 3-Point: >3 FTE months



PHASE 1 Performance

10 million particles
Spatial 3-Point
3->4 Mpc

(SDSS DR1 takes less
than 1 minute with 
perfect load balancing)



PHASE 1 Performance

10 million particles
Projected 3-Point
0->3 Mpc



Proof of Concept: PHASE 2

N N TropyTropy
(Currently in progress)

Use only Parallel Management Layer of PKDGRAV.

Rewrite everything else from scratch

Computational Steering Layer

Parallel Management Layer

Serial Layer

Gravity Calculator Hydro Calculator

PKDGRAV Functional Layout

Executes on master processor

Coordinates execution and data
distribution among processors

Executes on all processors



Proof of Concept: PHASE 2

N N TropyTropy
(Currently in progress)

Use only Parallel Managment Layer of PKDGRAV.
Rewrite everything else from scratch
PKDGRAV benefits to keep:

Flexible client-server scheduling architecture
Threads respond to service requests issued by master.
To do a new task, simply add a new service.

Portability
Interprocessor communication occurs by high-level requests to
“Machine-Dependent Layer” (MDL) which is rewritten to take
advantage of each parallel architecture.

Advanced interprocessor data caching
< 1 in 100,000 off-PE requests actually result in communication.



N Tropy Design

Computational Steering Layer

General-purpose tree building 
and tree walking routines

UserTestCells
UserTestParticles

Domain decomposition

Tree Traversal

Parallel I/O

PKDGRAV Parallel Management Layer

“User” Supplied Layer

UserCellAccumulate
UserParticleAccumulate

Result trackingUserCellSubsume
UserParticleSubsume

Tree Building

2-Point and 3-Point2-Point and 3-Point

algorithm are nowalgorithm are now

complete!complete!

Interprocessor
communication layer

Layers retained from PKDGRAV

Layers completely rewritten

Key:

Tree Services

Web Service Layer



N Tropy “Meaningful” Benchmarks

The purpose of this framework is to
minimize development time!

Rewriting user and scheduling layer to
do an N-body gravity calculation:



N Tropy “Meaningful” Benchmarks

The purpose of this framework is to
minimize development time!

Rewriting user and scheduling layer to
do an N-body gravity calculation:

3 Hours



N Tropy New Features
(coming soon)

Dynamic load balancing
Workload and processor domain
boundaries can be dynamically reallocated
as computation progresses.

Data pre-fetching
Predict request off-PE data that will be
needed for upcoming tree nodes.

Work with CMU Auton-lab to investigate
active learning algorithms to prefetch off-
PE data.



N Tropy New Features
(coming soon)

Computing across grid nodes

Much more difficult than between nodes on a
tightly-coupled parallel machine:

Network latencies between grid resources 1000 times

higher than nodes on a single parallel machine.

Nodes on a far grid resources must be treated
differently than the processor next door:

Data mirroring or aggressive prefetching.

Sophisticated workload management, synchronization



Conclusions

Most data analysis in astronomy is
done using trees as the fundamental
data structure.

Most operations on these tree
structures are functionally identical.

Based on our studies so far, it appears
feasible to construct a general purpose
parallel framework that users can
rapidly customize to their needs.


